8 research outputs found

    Build 3D Abstractions with Wireframes

    Get PDF
    This chapter serves as an introduction to 3D representations of scenes or Structure From Motion (SfM) from straight line segments. Lines are frequently found in captures of man-made environments, and in nature are mixed with more organic shapes. The inclusion of straight lines in 3D representations provide structural information about the captured shapes and their limits, such as the intersection of planar structures. Line based SfM methods are not frequent in the literature due to the difficulty of detecting them reliably, their morphological changes under changes of perspective and the challenges inherent to finding correspondences of segments in images between the different views. Additionally, compared to points, lines add the dimensionalities carried by the line directions and lengths, which prevents the epipolar constraint to be valid along a straight line segment between two different views. This chapter introduces the geometrical relations which have to be exploited for SfM sketch or abstraction based on line segments, the optimization methods for its optimization, and how to compare the experimental results with Ground-Truth measurements

    Scene Wireframes Sketching for Drones

    No full text
    The increasing use of autonomous UAVs inside buildings and around human-made structures demands new accurate and comprehensive representation of their operation environments. Most of the 3D scene abstraction methods use invariant feature point matching, nevertheless some sparse 3D point clouds do not concisely represent the structure of the environment. Likewise, line clouds constructed by short and redundant segments with inaccurate directions limit the understanding of scenes as those that include environments with poor texture, or whose texture resembles a repetitive pattern. The presented approach is based on observation and representation models using the straight line segments, whose resemble the limits of an urban indoor or outdoor environment. The goal of the work is to get a full method based on the matching of lines that provides a complementary approach to state-of-the-art methods when facing 3D scene representation of poor texture environments for future autonomous UAV

    A novel mutation, outside of the candidate region for diagnosis, in the inverted formin 2 gene can cause focal segmental glomerulosclerosis

    Get PDF
    Focal and segmental glomerulosclerosis (FSGS) is a histological pattern that has several etiologies, including genetics. The autosomal dominant form of FSGS is a heterogenic disease caused by mutations within three known genes: α-actinin 4 (ACTN4), canonical transient receptor potential 6 (TRPC6), and the inverted formin 2 (INF2) gene. More recently, INF2 mutations have also been attributed to Charcot–Marie–Tooth neuropathy associated with FSGS. Here we performed direct sequencing, histological characterization, and functional studies in a cohort of families with autosomal dominant FSGS. We detected a novel mutation in exon 6 of the INF2 gene outside of the exon 2–4 candidate region used for rapid diagnosis of autosomal dominant FSGS. This new mutation is predicted to alter a highly conserved amino-acid residue within the 17th α-helix of the diaphanous inhibitory domain of the protein. A long-term follow-up of this family indicated that all patients were diagnosed in adulthood, as opposed to early childhood, and progression to end-stage renal disease was at different times without clinical or electrodiagnostic evidence of neuropathy. Thus, this novel mutation in INF2 linked to nonsyndromic FSGS indicates the necessity for full gene sequencing if no mutation is found in the current rapid-screen region of the gene
    corecore